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Bayesian decision making of maintenance strategy selection 
in offshore sectors 

Abstract 

Decision making in general is a challenging task in offshore and marine industrial sectors. That 
is why, calling a reliable method to make a decision is vital such areas. Multi-criteria decision 
making (MCDM) tools have been widely utilized this fields. However, MCDM methods are deeply 
suffering from couple of shortages, such as but not limited to the final output is totally depending 
on qualitative terms, data and model uncertainties are not handled, confidence level of decision 
is ignored, and it is not considered the factor time into the final decision. In order to deal with the 
aforementioned shortages, the fuzzy Bayesian structural method as a reliable and powerful tool 
can be used. The maintenance strategy selection in offshore sectors is utilized as an application 
of study show the effectiveness of Bayesian structural method. The results also compared with 
different type of MCDM methods, which showing that Bayesian structural method has high merits 
over conventional decision-making tools. 
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1. Introduction

Making a correct, acceptable, or at least proper 
decision is important for industrial sectors, 
especially high-tech ones. Therefore, academic 
and industries are together allocating time and 
budget to reach an appropriate tool to make a 
decision in a period of time. What all scientists 
are doing in different fields is finally to make 
a right decision. Today, we are in Pandemic 
situation and chief challenging task is making 
decision, shall government lockdown the cities, 
shall government prepaid untrusted vaccines, 
shall people come together for visiting, and 
many other questions, which there is not simple 
answer, even more correct answer. Thus, what 
one can do is be ensure that he/she considers 
all factors that playing role in the decision 
making process. In addition, he/she should 
update their decision over period of time and 
have knowledge what is confidence level of 
their decisions. 
In literature, multi-criteria decision making 
(MCDM) is well known to rank, select, and 
order a set of alternatives among different 
types of criteria (Liu, 2016; Yazdi, 2020). 
According to the M. Yazdi (2019a) provided a 
history of decision making methods over time. 
It is highlighted by time MCDM techniques 
have been received much many attentions. The 
MCDM methods were extensively applied in 
such as Analytical hierarchy process (AHP) 
(Awasthi and Chauhan, 2011; Yazdi, 2017; Zhu 
et al., 2020), TOPSIS (The Technique for Order 
of Preference by Similarity to Ideal Solution) 
(Deng et al., 2000; Yazdi, 2018a; Yazdi et al., 
2018), Best-worst method (BWM) (Liao et 
al., 2019; Yazdi et al., 2020) and DEMATEL 
(decision-making trial and evaluation 
laboratory) (Han and Deng, 2018; Kaya and 

Yet, 2019; Meng et al., 2019; Si et al., 2018; 
Sumrit and Anuntavoranich, 2013), GRA (Grey 
Relation Analysis) (H.-C. Liu, 2019), Distance 
measures, VIKOR (VlseKriterijumska 
Optimizacija I Kompromisno Resenje) (X. 
D. H. Liu, 2019; Mohsen and Fereshteh, 
2017), PROMETHEE (Preference ranking 
organization method for enrichment evaluation) 
(Liu et al., 2017), ELECTRE (elimination and 
choice expressing reality) (Yadav et al., 2018), 
BWM (Best-worst method), etc (Chang et al., 
2013; Gul et al., 2018; Liu et al., 2017; Nie 
et al., 2018; Ren et al., 2017; Rezaei, 2015; 
Saaty, 1996; Yadav et al., 2018) and so on. 
To correctly use the MCDM methods in this 
problem, it is necessary to consider different 
criteria such as environmental protection, 
reliability, safety, cost, and etc. in the structured 
hierarchy of the decision-making process. 
Considering the different performance of the 
MCDM techniques, selecting an appropriate 
MCDM tool applicable to the decision-making 
problem is also significantly important. 
However, MCDM methods extremely suffer 
from different shortages, such as the final output 
is completely depending on qualitative terms, 
data and model uncertainties are not handled, 
confidence level of decision is ignored, and it 
is not considered the factor time into the final 
decision. Therefore, it is required to looking for 
new methods or proposing new framework.
Bayesian Network (BN) as an appropriate 
mathematics-based method which can be 
used for decision making purposes and has a 
significant feature in modeling both quantitative 
and qualitative variables compared to other 
MCDM methods. BN has been widely applied 
as a tool for uncertainty handling and risk 
assessment purposes in different studies (El-
Gheriani et al., 2017; Kabir and Papadopoulos, 
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2019; Khakzad et al., 2013; Misuri et al., 2018; 
Mohammad Yazdi, 2019b; Yazdi et al., 2019). 
BN uses a graphical structure to describe 
causes and effects by utilizing quantification of 
joining different types of variables. To see how 
BN can deal with the shortages of conventional 
decision-making tools, first the nodes in BN 
can be defined using continues nodes within 
distributions. Therefore, the output would be 
represented as a distribution in which shows 
confidence level. In addition, BN can be updated 
the input data in case availability; therefore, it 
deals with data uncertainty. Besides, BN can be 
further developed as dynamic BN, which come 
with time. According to the aforementioned 
points, using BN provides much more realistic 
results (Yazdi et al., 2021). 
The contributions of the current study are 
threefold. First of all, a maintenance strategy 
selection in offshore sectors is studied. 
Secondly, dynamic BN is used to make decision 
over period of time. Finally, a comprehensive 
comparison is conducted to show the advantages 
and disadvantages of different methods. 

2. Materials and methods

2.1. Bayesian structural method in 
decision making

In this section, the theoretical context of 
BN is presented. BN is a directed acyclic 
graph (DAG), including vertices and edges 
named as nodes and arcs, respectively, in the 
available network. In a BN, nodes represent 
the variables and arcs denote the relations 
between the two nodes. BN is well-known as 
a viable tool which has enough capability to 
consider both uncertainty influence as well as 
variability. In this accordance, it helps estimate 
decisions associated with complex decision-

making problems (Fenton and Neil, 2018). 
BN is based on Bayes’ theorem. In this case, 
BN uses the prior information (hypothesis) of 
a primary event which can further perform a 
rational statistical inference. In a simple word, 
backward belief propagation can be obtained 
when evidence is set to the child node and it 
will result in the probability distribution of 
parent node(s). The reverse conditions are also 
true. In this case, the prior information can be 
obtained from subjectivity such as experts’ 
judgments or objectivity such as observed data 
within a frequentist approach (Yazdi and Kabir, 
2017; Yazdi and Kabir, 2020; Kabir et al., 2018; 
Daneshvar et al., 2020). 
Thomas Bayes, a British mathematician, 
proposed Bayes’ rule [1701-1761] (Lynch, 
2015). Bayes’ rule presents that both probability 
of X and Y as two variables, can occur when the 
production of X and Y are given X in terms of 
probability. The above-mentioned expression 
can be stated as the following Equation: 
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where, P (X, Y) represents the probability of 
both variables  and  which can occur. 
With consideration of symmetry law, the Equation 
(1) can be modified into the Equation (2) as:
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the joint probability distribution of variables 
can be decomposed as Equation (3):
P (X1, X2, X3,..., Xn)= P(X1| X2, X3, ..., Xn)×
P(X2| X3, ..., Xn) × P(Xn-1| Xn)                            

(3)

Subsequently, by simplification, Equation (3) 
can be streamlined into Equation (4):
P (X1, X2, X3,..., Xn)= P(X1| X2, X3, ..., Xn)×
P(X2| X3, ..., Xn)= ∏n

i=1 × P(Xi| Xi+1, Xi+2,..., Xn)
= ∏n

i=1 × P(Xi| Parrents (Xi))                              (4)
Assume that a typical BN is structured having a 
set of limited variables being , M= {X1, X2, X3, ..., 
Xn} and consists of a set of arcs which illustrates 
the interdependency and relationships between 
the existing variables (see Figure 1). 
To get more details related to BN, one can refer 
to the previous literature (Fenton and Neil, 
2018).

2.2. Bayesian Network in Decision 
Making 

To use BN in decision making, it required couple 
steps, which are provided in the following. In 
step one; all potential factors and sub-factors in 
our model should be identified. In step two, we 
need to compute the weight of all factors and 
corresponding sub-factors. In step three, the 
causality between the factors and sub-factors 
should be determined. Finally, the graphical 
representation of BN should be constructed. 
The graphical structure is defined based on 

the variables and obtaining the causality 
between the variables. When two nodes are 
directly connected to each other, thereafter, 
the parameters can be defined. The parameters 
can be derived as discrete, truncated Normal 
(TNormal) distribution, etc. The discrete 
parameters in BN models are typically obtained 
by node probability tables (NPTs). A typical 
NPT has probability values for the combination 
of the states of variables and its incorporated 
parents. Thus, an NPT contains a number of 
parameters, which are the Cartesian product 
of the states of the node and its corresponding 
parents. Therefore, the NPT would be infeasible 
in order to be elicited by the experts’ judgment, 
if and only if the variable has a considerable 
number of parents. TNormal distribution, 
unlike the Normal distribution, has finite 
endpoints. Similar to the Normal distribution, 
the TNormal is categorized by two mean and 
variance parameters. Using these parameters, 
a variety of shapes can be modeled (Xia et al., 
2018; Yazdi, 2018b).
The top event node will present the alternatives, 
and those that have the highest weight will 
receive the highest priority for selection.

3. Application of study and results
There is a decision-making problem to select 
an on-board machinery (crane) maintenance 
strategy for offshore operating. The hierarchi-
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cal model of this decision-making assessment 
procedure is as depicted in Figure 2. As it is 
highlighted in state of arts “The process of 
selecting appropriate maintenance strategy is 
important in order to improve the efficiency 
of operational marine and offshore machinery. 
In addition, this would be under uncertain cir-
cumstances as a challenging task because of 
many criteria that should to be considered and 
modelled” (Asuquo et al., 2019). Besides, de-
signing the complex machinery on board of a 
vessel includes many subjective and unknown 
parameters in different quantitative and quali-
tative forms.
Three decision makers have been employed 
to make a construct the BN by identifying all 
potential factors, sub-factors, relationships, and 
interrelationships between the factors. In Table 
1 presents the explanation of sub-factors and its 
contributors. The modelling procedures of the 
factors are provided in Table 2.
The BN model is structured using GeNie 2.4 
software (www.bayesfusion.com) to evaluate all 
possible alternatives for selecting maintenance 

strategy. The structured BN model for the 
first alternative of the maintenance strategy 
selection based on different factors is illustrated 
in Figure 2. Four different types of variables are 
considered to model the factors of maintenance 
strategy selection. The variables are classified 
considering the measurement of each variable 
including (i) qualitative variables (measuring 
the ordinal scale), (ii) Boolean variables 
(measuring the dichotomous response, “YES/
NO”, “WORK/NOT WORK”), (iii) continuous 
variables (measuring the random variables 
having known probability distribution), and (iv) 
constant variables having fixed values. A two 
states Boolean variable of “YES” and “NO” is 
utilized to model all factors. The state “YES” 
denotes positive output whereas the state “NO” 
indicates negative output. As illustrated in 
Figure 3, the probability of factors being “YES/
NO” is conditional on incorporated sub-factors. 
As it can be seen from the Figure 3, the priority 
of maintenance strategy is CBM (0.3951), RCM 
(0.2544), PM (0.1949), and RTFM (0.1556). 
A comparison conducted between the BN model 
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Figure 2. Hierarchical structure of maintenance strategy selection  
Note: RTFM, PM, CBM, and RCM stand for Run-to-Failure Maintenance, Preventive Maintenance, Condition Based 
Maintenance, and Reliability Centered Maintenance, respectively (Adopted after Asuquo et al., 2019) 
 

Three decision makers have been employed to make a construct the BN by identifying all potential 
factors, sub-factors, relationships, and interrelationships between the factors. In Table 1 presents 
the explanation of sub-factors and its contributors. The modelling procedures of the factors are 
provided in Table 2. 

  

Maintenance strategy 
selection 

RFTMPMCBMRCM

Reliability Cost Safety Availability Downtime

Objective 

Alternative

Criteria 
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   Table 1. Modelling procedure of variables contributed to the sub-factors 

Name of variable The procedure of modeling Description 

Reliability ~ Gamma distribution: Gamma 
(3,500) 

Gamma distribution is used to obtain the 
reliability in a year for the alternative of 

maintenance strategy selection.

Cost ~ Triangular (6000$, 10000$, 
12000$) 

Triangular distribution is used to obtain the 
maintenance cost with consideration to 

minimum, most likely, and maximum cost 
in a year for the alternative of maintenance 

strategy selection. 

Safety 
~ TNorm (0.2, 0.01), 

 

Truncated Normal distribution with mean 
and variance is used to obtain safety factor 

parameter a year for the alternative of 
maintenance strategy selection.

Availability ~ Weibull (12,8) 

2-Parameter Weibull distribution with 
scale parameter, shape parameter, and 

location parameter is used to obtain the 
availability in a year for the alternative of 

maintenance strategy selection

Downtime ~ Triangular (5, 16, 800) 

Triangular distribution is used to obtain the 
maintenance Downtime with consideration 

to minimum, most likely, and maximum 
Downtime in a year for the alternative of 

maintenance strategy selection.

 
  

904 
 

     Table 2. Modelling procedure of factors 
 

Name of variable The procedure of modeling 
Run-to-Failure Maintenance (RTFM) IF (Reliability = = “YES”, “YES”, “YES”, “YES”, “NO” 

IF (Cost = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Safety = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Availability = = “YES”, “YES”, “YES”, “YES”, “NO” 

IF (Downtime = = “YES”, “YES”, “YES”, “YES”, “NO” 

Preventive Maintenance (PM) IF (Reliability = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Cost = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Safety = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Availability = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Downtime = = “YES”, “YES”, “YES”, “YES”, “NO” 

Condition Based Maintenance (CBM) IF (Reliability = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Cost = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Safety = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Availability = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Downtime = = “YES”, “YES”, “YES”, “YES”, “NO” 

Reliability Centered Maintenance (RCM) IF (Reliability = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Cost = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Safety = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Availability = = “YES”, “YES”, “YES”, “YES”, “NO” 
IF (Downtime = = “YES”, “YES”, “YES”, “YES”, “NO” 

 

The BN model is structured using GeNie 2.4 software (www.bayesfusion.com) to evaluate all 
possible alternatives for selecting maintenance strategy. The structured BN model for the first 
alternative of the maintenance strategy selection based on different factors is illustrated in Figure 
2. Four different types of variables are considered to model the factors of maintenance strategy 
selection. The variables are classified considering the measurement of each variable including (i) 
qualitative variables (measuring the ordinal scale), (ii) Boolean variables (measuring the 
dichotomous response, “YES/NO”, “WORK/NOT WORK”), (iii) continuous variables 
(measuring the random variables having known probability distribution), and (iv) constant 
variables having fixed values. A two states Boolean variable of “YES” and “NO” is utilized to 
model all factors. The state “YES” denotes positive output whereas the state “NO” indicates 
negative output. As illustrated in Figure 3, the probability of factors being “YES/NO” is 
conditional on incorporated sub-factors.  
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and three MCDM techniques (AHP, TOPSIS, 
and BWM). The results are illustrated in Figure 
4 and it is concluded that the BN model has 
different results compared with rest of methods. 
That is because a different distribution is used 

as input date instead of crisp value. In addition, 
the confidence level for each factor and sub-
factor can be considered as they are represented 
as distribution. In this study, the confidence 
level is considered 90%. 
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Figure 3. The maintenance strategy selection based on structured BN model (the weights of all sub-factors are 
provided in a node in constructed BN and they are based on obtained opinions from three decision makers) 

 

As it can be seen from the Figure 3, the priority of maintenance strategy is CBM (0.3951), RCM 
(0.2544), PM (0.1949), and RTFM (0.1556).  

A comparison conducted between the BN model and three MCDM techniques (AHP, TOPSIS, 
and BWM). The results are illustrated in Figure 4 and it is concluded that the BN model has 
different results compared with rest of methods. That is because a different distribution is used as 
input date instead of crisp value. In addition, the confidence level for each factor and sub-factor 
can be considered as they are represented as distribution. In this study, the confidence level is 
considered 90%.  

Up to this point, BN are playing somehow the same role as MCDM methods. As it is mentioned 
in the literature, the typical MCDM methods cannot deal with dynamic features. As an example, 
the current results will be used over a period of time or reconstructing the model for each single 
year. In the maintenance strategy selection, all of the parameters are varying with time, such as 
reliability and availability. The factor reliability is also decreasing by time. That is while BN can 
be used different time slices. Figure 5 shows how dynamic figure maintenance strategy selection 
can vary over time.  
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      Figure 4. A comparison conducted between BN model and three MCDM techniques 
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Figure 5. Dynamic BN in time slice t=0 (top) and t=1(down) 
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Up to this point, BN are playing somehow 
the same role as MCDM methods. As it is 
mentioned in the literature, the typical MCDM 
methods cannot deal with dynamic features. As 
an example, the current results will be used over 
a period of time or reconstructing the model for 
each single year. In the maintenance strategy 
selection, all of the parameters are varying 
with time, such as reliability and availability. 
The factor reliability is also decreasing by time. 
That is while BN can be used different time 
slices. Figure 5 shows how dynamic figure 
maintenance strategy selection can vary over 
time. 
From dynamic feature of BN, it is concluded 
that at time t=1, the maintenance strategy 
selection is totally different from what decision 
makers selected at time t=0. Therefore, decision 

making can be updated by time showing the 
effectiveness of BN compare with the typical 
MCDM tools. 
In some realistic cases, we need to set an evidence 
to show that there is enough information for a 
sub-factor. Therefore, it would be received the 
value. In this analysis, it is assumed that sub-
factor is equal to 10000$. As it can be seen 
from Figure 6, the RFTM should be selected as 
maintenance strategy. 
Another shortage of typical MCDM methods is 
that they cannot consider the causality between 
the factors and sub-factors. Even the DEMATEL 
method can only show which factors has 
highest influence and which factor is receiving 
the most influence from other factors (Zhou et 
al., 2017). In next analysis, we consider that 
there are couples of interrelationships between 
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Figure 6. The maintenance strategy selection forward propagation  
 

Another shortage of typical MCDM methods is that they cannot consider the causality between 
the factors and sub-factors. Even the DEMATEL method can only show which factors has highest 
influence and which factor is receiving the most influence from other factors (Zhou et al., 2017). 
In next analysis, we consider that there are couples of interrelationships between sub-factors. As 
an example, Reliability has direct influence on Safety. Figure 7 illustrates how BN can consider 
the interrelationships between the sub-factors. As it is resulted, the interrelationships between the 
sub-factors can change the result of maintenance strategy selection. In this case the RFTM received 
highest priority to be selected with probability value of almost 41 %.  
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sub-factors. As an example, Reliability has 
direct influence on Safety. Figure 7 illustrates 
how BN can consider the interrelationships 
between the sub-factors. As it is resulted, the 
interrelationships between the sub-factors 
can change the result of maintenance strategy 
selection. In this case the RFTM received 
highest priority to be selected with probability 
value of almost 41 %. 

Conclusion

In this study, a Bayesian structural method is 
utilized in order to help decision makers in the 
decision-making problems. Generally, when 
the decision-making problem is selecting an 
alternative among a set of options, different type 
of MCDM methods are employed. Bayesian 
structural method has considerable advantages 
compare with the MCDM tools. That is why, in 
this study a Bayesian structural method is used 

to choose a maintenance strategy among four 
options in offshore industrial sectors. Bayesian 
network is provided for the application of study 
to show that its flexibility and efficiency. In 
addition, a comparison was conducted with 
MCDM tools in order to illustrate that the 
difference between BN and typical MCDM 
techniques.
However, there are couple of challenge have 
been faced during this study, which are required 
to be considered as a direction for future studies. 
First of all, three different decision makers 
were employed in this study. In literature, it is 
discussed that the decision maker has highest 
importance weight would influence the final 
output (Pasman and Rogers, 2020; Yazdi et 
al., 2017). Thus, it is vital to increase the 
number of decision maker to make a balance 
between all options obtained form decision 
makers. Secondly, the opinions obtained from 
experts have uncertainties which are required 
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Figure 7. The maintenance strategy selection with consideration of interrelationships 
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In this study, a Bayesian structural method is utilized in order to help decision makers in the 
decision-making problems. Generally, when the decision-making problem is selecting an 
alternative among a set of options, different type of MCDM methods are employed. Bayesian 
structural method has considerable advantages compare with the MCDM tools. That is why, in 
this study a Bayesian structural method is used to choose a maintenance strategy among four 
options in offshore industrial sectors. Bayesian network is provided for the application of study to 
show that its flexibility and efficiency. In addition, a comparison was conducted with MCDM tools 
in order to illustrate that the difference between BN and typical MCDM techniques. 

However, there are couple of challenge have been faced during this study, which are required to 
be considered as a direction for future studies. First of all, three different decision makers were 
employed in this study. In literature, it is discussed that the decision maker has highest importance 
weight would influence the final output (Pasman and Rogers, 2020; Yazdi et al., 2017). Thus, it is 
vital to increase the number of decision maker to make a balance between all options obtained 
form decision makers. Secondly, the opinions obtained from experts have uncertainties which are 
required be handed. Fuzzy set theory and its extensions can be utilized in order to handle subjective 
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be handed. Fuzzy set theory and its extensions 
can be utilized in order to handle subjective 
type of uncertainty. Finally, a framework by 
providing a hybrid model such as combination 
of influence diagram and BN can be structured.
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