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Abstract 

Marine ecosystems play a vital role in climate regulation, food supply, and biodiversity 

preservation. With increasing threats from climate change, oil pollution, and 

overexploitation, the need for accurate and continuous monitoring of environmental 

indicators has become critical. Machine learning, as a branch of artificial intelligence, 

offers powerful tools for analyzing complex datasets and uncovering hidden patterns. This 

study investigates the application of machine learning algorithms—specifically Random 

Forest, Support Vector Machines (SVM), and Artificial Neural Networks (ANN)—in 

monitoring key indicators such as sea surface temperature, salinity, dissolved oxygen, 

chlorophyll-a, and oil pollution along southern Iranian coasts. Results demonstrate that 

these models can accurately predict environmental changes and support effective water 

resource management. 

Keywords: Machine learning; Water resources; Marine ecosystems; Artificial neural 

networks; Sustainable management. 

1. Introduction 

Iran’s marine ecosystems—including the Persian Gulf, Gulf of Oman, and Caspian Sea—

are essential for national food security, energy supply, and ecological balance. However, 
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threats such as industrial pollution, rising sea surface temperatures, declining oxygen 

levels, and salinity fluctuations have placed these ecosystems at risk (Bayani, 2016). 

Traditional monitoring methods rely on physical sensors and periodic sampling, which are 

often costly and time-consuming. Machine learning (ML), by contrast, enables the analysis 

of large, multidimensional datasets and the prediction of environmental trends (LeCun et 

al., 2015). Strategic planning serves as a crucial tool to address these challenges by 

providing a comprehensive framework for sustainable water resource management 

(Shariati and Haghroosta, 2023). This study explores how ML can enhance marine 

environmental monitoring and contribute to sustainable water resource management. 

Marine ecosystems face increasing threats from climate change, pollution, and 

overexploitation. Traditional monitoring methods, while valuable, often lack the spatial and 

temporal resolution needed for timely intervention. Artificial Intelligence (AI), particularly 

machine learning (ML), offers transformative capabilities for analyzing complex 

environmental data, predicting ecological shifts, and supporting sustainable marine 

management (Adeoba et al., 2025). 

1.1. Theoretical framework and literature review 

Machine learning algorithms are designed to learn from data patterns without explicit 

programming. They are broadly categorized into supervised learning—where models are 

trained on labeled datasets—and unsupervised learning, which identifies structures within 

unlabeled data. Common supervised algorithms include Linear Regression, SVM, and 

Random Forest, while unsupervised methods encompass clustering techniques such as K-

Means and DBSCAN. 

Numerous studies have validated the utility of ML in marine applications. For instance, 

Huby et al. (2022) employed convolutional neural networks to detect oil spills in satellite 

imagery with high spatial accuracy. Patil and Deo (2018) demonstrated the predictive 

capacity of ANNs in modeling sea surface temperature variations. In the Persian Gulf 

context, Rahimi and Mohammadi (2022) applied Random Forest to assess water quality 

parameters, achieving notable classification performance. 

Further contributions by Sakaa et al. (2022) and Haghroosta (2022) underscore the 

relevance of ML in environmental modeling, particularly in scenarios involving complex 

interactions among physical, chemical, and biological indicators. These studies collectively 

affirm that ML can serve as a cornerstone for modern marine monitoring systems. 

2. Methodology 

Environmental data were collected from monitoring stations located in Bandar Abbas, 

Bushehr, and Chabahar between 2019 and 2024. The dataset was compiled from multiple 

sources, including Iran’s Marine Environmental Monitoring System, the Sentinel-3 satellite 

database provided by the European Space Agency, the National Oceanography Center, and 

field campaigns conducted by university research teams. 
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2.1. Monitored indicators 

The selected indicators were measured using a combination of in-situ sensors and remote 

sensing platforms. These variables were processed using supervised learning algorithms, 

notably Random Forest and XGBoost, to detect anomalies and forecast temporal trends. 

 Sea Surface Temperature (°C), Indicator of thermal stress and climate variability  

 Salinity (ppt), Influences species distribution and ocean circulation  

 Dissolved Oxygen (DO), Reflects biological activity and water quality (mg/L) 

 Chlorophyll-a (µg/L), Proxy for phytoplankton biomass and primary productivity  

 Heavy Metals (Pb, Hg, Cd), Marker of industrial pollution and ecological toxicity  

 Oil Pollution (mg/L) 

 AI Prediction Accuracy, Performance metric of ML models in forecasting 

environmental conditions 

3. Results and analysis 

3.1. Temporal trends in environmental indicators 

Sea surface temperature (SST) exhibited clear seasonal oscillations, with peak values 

recorded during the summer months (June to August), reaching up to 24.5°C in some 

regions. These fluctuations are consistent with regional climatology and are influenced by 

solar radiation intensity, evaporation rates, and prevailing wind patterns. The elevated SSTs 

were often accompanied by a decline in dissolved oxygen (DO) concentrations, particularly 

in semi-enclosed coastal zones, suggesting thermal stratification and reduced vertical 

mixing—conditions that can lead to hypoxia and stress marine organisms. 

As a sample of monthly average (Table 1), salinity levels also showed seasonal variability, 

with higher concentrations observed during dry months due to increased evaporation and 

reduced freshwater inflow. In contrast, during monsoonal periods or following rainfall 

events, salinity decreased slightly, indicating freshwater dilution. The mean salinity across 

all stations was 35.2 ppt, with standard deviations reflecting localized hydrodynamic 

conditions and estuarine influences. 

Chlorophyll-a concentrations peaked during spring (March–May) and autumn (September–

November), corresponding to phytoplankton bloom periods. These blooms were likely 

driven by nutrient upwelling and favorable light conditions. Interestingly, elevated 

chlorophyll-a levels were occasionally associated with increased concentrations of heavy 

metals, particularly cadmium and lead, suggesting a possible link between pollutant influx 

and eutrophication. This correlation warrants further investigation into the role of industrial 

runoff and sediment resuspension in stimulating algal growth. 
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Oil pollution levels were more sporadic, with sharp increases recorded near major ports 

and shipping lanes. The highest concentrations were observed in Bushehr during late 2022, 

coinciding with reported tanker activity and dredging operations. Unlike other indicators, 

oil pollution did not exhibit strong seasonal patterns, reinforcing the hypothesis that its 

sources are episodic and anthropogenic. 

Table 1 presents the monthly averages and standard deviations for each indicator. These 

values serve as baseline references for future monitoring and model calibration. For 

instance, the mean DO concentration of 6.0 mg/L is within acceptable ecological 

thresholds, but its variability under thermal stress conditions highlights the need for 

continuous observation. 

Table 1. Sample monthly averages 

Indicator Mean Std. Dev. Unit 

Sea Surface Temperature 20.1 ±2.0 °C 

Salinity 35.2 ±1.5 ppt 

Dissolved Oxygen 6.0 ±0.5 mg/L 

Chlorophyll-a 3.1 ±1.0 µg/L 

Heavy Metals 0.52 ±0.2 µg/L 

Oil Pollution 0.048 ±0.02 mg/L 

3.2. Model performance and predictive accuracy 

Three machine learning models—Random Forest, Support Vector Machine (SVM), and 

Artificial Neural Network (ANN)—were trained and validated using five-fold cross-

validation. Their performance metrics are summarized in Table 2. 

 Artificial Neural Network (Braspenning, 1995): Achieved the highest accuracy (94%) 

in predicting SST and salinity trends. Its multilayer architecture allowed it to capture 

nonlinear relationships and temporal dependencies effectively. 

 Random Forest (Pavlov, 2000): Demonstrated strong performance (92%) in classifying 

water quality zones based on multiple indicators. Its ensemble nature provided 

robustness against overfitting and handled missing data efficiently. 

 Support Vector Machine (SVM): Delivered reliable results (89%) in detecting oil 

pollution events using satellite-derived spectral features. The radial basis function 

(RBF) kernel enabled it to model complex decision boundaries, although its 

sensitivity to parameter tuning was noted (Ma and Guo, 2014). 

Overall, the models showed high generalizability and were able to replicate observed 

patterns with minimal error. The integration of satellite data, in-situ measurements, and ML 

algorithms proved to be a powerful combination for environmental forecasting and 

anomaly detection. 
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Table 2. Applied algorithms and parameters 

Algorithm Application Parameters Accuracy 

Random Forest Water quality 

classification 

100 trees, 

Depth=10 

92% 

SVM Oil pollution detection RBF kernel, 

C=1 

89% 

Artificial Neural Network Temp & salinity prediction 3 hidden layers, 

50 neurons 

94% 

Models were validated using five-fold cross-validation. 

As Figure 1 represents, the sea surface temperature and salinity show seasonal fluctuations, 

peaking in warmer months due to evaporation and surface currents. Moreover, 

Chlorophyll-a, increases in spring and autumn, indicating phytoplankton 

blooms. Furthermore, oil pollution and heavy metals spike irregularly, likely due to port 

activities or industrial discharge. 

 
Figure 1. Trends of environmental indicators over time (2022-2025) 

The correlation matrix (Figure 2) provided quantitative insights into the relationships 

among environmental variables. A strong negative correlation (r ≈ -0.72) was observed 

between SST and DO, confirming the thermally driven oxygen depletion mechanism. This 
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relationship is ecologically significant, as it affects fish migration, benthic respiration, and 

overall ecosystem resilience. 

A moderate positive correlation (r ≈ 0.58) between chlorophyll-a and heavy metals suggests 

that pollutant-induced nutrient enrichment may be contributing to algal proliferation. While 

this could indicate a form of ecological adaptation, it also raises concerns about the 

potential for harmful algal blooms (HABs) and toxin accumulation in the food web. 

Oil pollution showed weak correlations with other indicators (r < 0.3), implying that its 

occurrence is largely independent of natural environmental cycles and more closely tied to 

human activities. This finding supports the need for targeted monitoring strategies that 

focus on high-risk zones such as harbors, industrial outfalls, and shipping corridors. 

 
Figure 2. Correlation matrix of the indicators 

4. Discussion 

The findings affirm that ML algorithms are capable of effectively monitoring marine 

environmental indicators and uncovering latent ecological patterns. These models facilitate 

real-time monitoring, enable predictive modeling for environmental planning, and support 

the classification of water quality zones and identification of ecologically sensitive areas. 

Key advantages of ML in marine contexts include its ability to handle large, heterogeneous 

datasets, reduce operational costs, enhance predictive precision, and integrate seamlessly 

with satellite and IoT sensor networks. Nonetheless, challenges persist, particularly 

regarding data quality, environmental noise, and the necessity for expert interpretation. The 

synergistic integration of ML with domain expertise and smart sensor infrastructures 

presents a promising avenue for future research and operational deployment (Goodfellow 

et al., 2016). The observed seasonal dynamics in sea surface temperature and salinity align 
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with known oceanographic processes such as monsoonal cycles, evaporation rates, and 

regional current systems. The inverse relationship between temperature and dissolved 

oxygen is particularly critical, as it reflects hypoxic conditions that can severely impact 

marine biodiversity and fisheries productivity. This finding is consistent with global trends 

in ocean deoxygenation, which have been linked to climate-induced warming and 

stratification (Breitburg et al., 2018). 

The moderate correlation between chlorophyll-a and heavy metals suggests a complex 

interaction where pollutant influx may stimulate phytoplankton growth, potentially leading 

to harmful algal blooms (HABs). Such blooms not only disrupt trophic dynamics but also 

pose risks to human health and coastal economies. The weak correlation of oil pollution 

with other indicators implies that its sources are episodic and anthropogenic, such as 

shipping traffic, port operations, or accidental spills—highlighting the need for targeted 

surveillance and rapid response systems. 

From a methodological standpoint, the comparative performance of ML models reveals 

important insights. The ANN model achieved the highest predictive accuracy, likely due to 

its ability to model nonlinear relationships and capture temporal dependencies. Random 

Forest, with its ensemble structure, offered robust classification capabilities and resistance 

to overfitting. SVM, while slightly less accurate, demonstrated strong performance in 

binary classification tasks such as oil spill detection. These results affirm that model 

selection should be context-specific, guided by the nature of the data and the monitoring 

objectives. Beyond technical performance, the operational advantages of ML are 

substantial. These include scalability across large spatial domains, adaptability to real-time 

data streams, and compatibility with remote sensing and IoT platforms. However, 

challenges persist. Data heterogeneity, sensor calibration inconsistencies, and 

environmental noise can compromise model reliability. Moreover, the interpretability of 

complex models—especially deep learning architectures—remains a concern in regulatory 

and policy contexts where transparency is essential. 

To address these limitations, hybrid approaches that combine ML with physical models, 

expert systems, and domain knowledge are increasingly advocated. For instance, coupling 

ML with numerical ocean models can enhance predictive fidelity and provide mechanistic 

insights. Similarly, embedding ML outputs into Geographic Information Systems (GIS) 

can facilitate spatial planning and stakeholder engagement. The future of marine 

monitoring lies in such integrative frameworks that balance computational power with 

ecological understanding. 

Conclusion 

This study provides compelling evidence that machine learning is not merely a 

computational tool but a strategic asset in marine environmental governance. By leveraging 

ML algorithms to monitor key indicators—such as temperature, salinity, oxygen levels, 

chlorophyll-a, heavy metals, and oil pollution—coastal managers can transition from 
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reactive to proactive decision-making. The demonstrated accuracy and versatility of 

models like ANN, Random Forest, and SVM suggest that ML can serve as the analytical 

backbone of intelligent monitoring systems. These systems, when embedded within 

national marine observation networks, can offer real-time diagnostics, early warning 

capabilities, and scenario-based forecasting. Such functionalities are essential for 

mitigating ecological risks, optimizing resource allocation, and ensuring compliance with 

environmental regulations. 

However, the successful deployment of ML in marine contexts requires more than 

algorithmic sophistication. It demands robust data infrastructures, interdisciplinary 

collaboration, and institutional commitment to innovation. Investments in sensor networks, 

satellite integration, and data standardization are foundational. Equally important is the 

cultivation of human expertise—marine scientists, data engineers, and policy analysts—

who can interpret ML outputs and translate them into actionable insights. 

Looking ahead, future research should explore the development of hybrid models that 

integrate ML with physical oceanography, biogeochemical modeling, and socio-economic 

analysis. Real-time deployment strategies, including edge computing and cloud-based 

platforms, can enhance responsiveness and scalability. Moreover, embedding ML 

frameworks within policy instruments—such as marine spatial planning, environmental 

impact assessments, and adaptive management protocols—can institutionalize their use and 

amplify their impact. 

In conclusion, machine learning holds transformative potential for marine environmental 

monitoring and water resource management. Its adoption marks a critical step toward data-

driven, resilient, and sustainable coastal governance—one that is equipped to navigate the 

complexities of a changing ocean. 
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